更多>>精华博文推荐
更多>>人气最旺专家

胡惠斋

领域:江苏快讯

介绍:正像唐修亮校长所谈到的那样,对于高考改革的基本认知应该是“跳出高考看一切”,而不是仅仅关注成绩和分数。...

郑梦霞

领域:江苏快讯

介绍:(一)强化对经济工作的监督。利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66

利来国际W66
本站新公告利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66
umn | 2019-01-18 | 阅读(928) | 评论(320)
用户服务条款尊敬的用户:您好!欢迎光临文档投稿赚钱网站。【阅读全文】
利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66
7mt | 2019-01-18 | 阅读(836) | 评论(463)
PAGE3.课后篇巩固探究                A组1.已知某线性规划问题中的目标函数为z=3x-y,若将其看成直线方程,则z的几何意义是(  )A.该直线的截距B.该直线的纵截距C.该直线的纵截距的相反数D.该直线的横截距解析由z=3x-y,得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.答案C2.目标函数z=x-y在2x-yA.(0,1)B.(-1,-1)C.(1,0)解析可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=,y=时,z=0.排除选项A,B,D,故选C.答案C3.若变量x,y满足约束条件x+y≤3,x-y≥-有最大值无最小值有最小值无最大值的最小值是的最大值是10解析由z=4x+2y,得y=-2x+.作出不等式组对应的平面区域,如图阴影部分所示.平移直线y=-2x,当直线y=-2x+经过点B(0,1)时,直线y=-2x+在y轴上的截距最小,此时z最小,且zmin=2.当直线y=-2x+经过点C(2,1)时,直线y=-2x+在y轴上的截距最大,此时z最大,且zmax=4×2+2×1=10.故选D.答案D4.若直线y=2x上存在点(x,y)满足约束条件x+y-3≤0,A.-解析满足约束条件的平面区域如图中的阴影部分所示,由y=2x,x+y-3=0得交点P(1,2).答案B5.已知实数x,y满足约束条件x-y+4≥0,x+y解析因为z=2x+y,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y的最小值是-2.答案-26.已知变量x,y满足2x-y≤0,解析作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A处取得最大值.易知A(1,2),故zmax=1+2-2=1.答案17.铁矿石A和B的含铁率a、冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:ab/万吨c/百万元A50%13B70%某冶炼厂至少要生产万吨的铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为     百万元.解析设需购买铁矿石Ax万吨,铁矿石By万吨,购买费用为z,则根据题意得到的约束条件为x≥0,y≥0,+≥,x+≤2,目标函数为z=3x+答案158.导学号04994076已知S为平面上以A(3,-1),B(-1,1),C(1,3)为顶点的三角形区域(含三角形内部及边界).若点(x,y)在区域S上移动.(1)求z=3x-2y的最值;(2)求z=y-x的最大值,并指出其最优解.解(1)z=3x-2y可化为y=x-z2=32x+b,故求z的最大值、最小值,相当于求直线y=x+b在y轴上的截距b的最小值、最大值,即b①如图①,平移直线y=x,当y=x+b经过点B时,bmax=,此时zmin=-2b=-5;当y=x+b经过点A时,bmin=-112,此时zmax=-2b=11.故z=3x-2y的最大值为11,最小值为-5(2)z=y-x可化为y=x+z,故求z的最大值,相当于求直线y=x+z在y轴上的截距z的最大值.如图②,平行移动直线y=x,当直线y=x+z与直线BC重合时,zmax=2,此时线段BC上任一点的坐标都是最优解.②9.甜柚和脐橙是赣州地区的两大水果特产,一农民有山地20亩,根据往年经验,若种脐橙,则每年每亩平均产量为1000千克;若种甜柚,则每年每亩平均产量为1500千克.已知脐橙成本每年每亩4000元,甜柚成本较高,每年每亩12000元,且脐橙每千克卖6元,甜柚每千克卖10元.现该农民有120000元,那么两种水果的种植面积分别为多少,才能获得最大收益解设该农民种x亩脐橙,y亩甜柚时,能获得利润z元.则z=(1000×6-4000)x+(1500×10-12000)y=2000x+3000y,其中x,y满足条件x+y当直线y=-x+z3000经过点B组                1.若变量x,y满足约束条件x+y≤8,2y-x≤4,x≥0,解析画出可行域,如图阴影部分所示.由图可知,当直线y=x5+z5经过点A时,z有最大值;经过点B时,z有最小值.联立方程组x+y对x+y=8,令y=0,则x=8,即B(8,0),所以a=5×4-4=16,b=5×0-8=-8,则a-b=16-(-8【阅读全文】
c8w | 2019-01-18 | 阅读(198) | 评论(608)
4.量筒的读数方法一、量筒的使用用量筒测液体的积.量筒里的水面是凹形的,读数时,应把量筒放在水平桌面上,观察刻度时,视线、刻度线与量筒内液体的凹液面最低处三者保持水平。【阅读全文】
ab8 | 2019-01-18 | 阅读(100) | 评论(416)
(问):股市崩溃意味着什么?*我们知道:股市崩溃了。【阅读全文】
x8s | 2019-01-18 | 阅读(369) | 评论(407)
**第七节哺乳动物上图争相吃奶的小狗多可爱!哺乳动物用乳汁哺育幼崽。【阅读全文】
uqc | 2019-01-17 | 阅读(581) | 评论(648)
其次就是对法律条的熟悉,因本人所学专业不是法学,所以在工作中不断“恶补”相关法律知识,通过近一年的工作实践,对民事案涉及的相关法律条有了大体的了解和初步的掌握。【阅读全文】
ngm | 2019-01-17 | 阅读(462) | 评论(503)
日本《朝日新闻》29日报道称,这是中国时隔7年7个月后,首次允许日本农产品进口中国。【阅读全文】
7vw | 2019-01-17 | 阅读(46) | 评论(149)
(3)让一个文档产生N倍收益的妙招——利用闲暇时间赚取网友提出的咨询费因为文档是你自己写的原创,而你在这一方面的专长肯定是无疑的,所以,我们正在试图打造一个“悬赏问答”以及一对一的付费咨询系统。【阅读全文】
利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66
k8v | 2019-01-17 | 阅读(134) | 评论(512)
老师们也无一不在寻找着,尝试着,试图找到更高效的教学理念和教学方法,但囿于种种限制,积累的经验或者教训多数是散碎的片段,零散,不系统。【阅读全文】
6sd | 2019-01-16 | 阅读(742) | 评论(111)
由于仅蛋白质分子中含有S,而P几乎都存在于DNA中(搅拌的目的是使吸附在细【阅读全文】
n6x | 2019-01-16 | 阅读(283) | 评论(937)
在纯种暗红眼♀×纯种朱红眼♂的正交实验中,F1只有暗红眼;在纯种朱红眼♀×纯种暗红眼♂的反交实验中,F1雌性为暗红眼,雄性为朱红眼。【阅读全文】
xe7 | 2019-01-16 | 阅读(504) | 评论(149)
新苗怀远风,荒田土已辟。【阅读全文】
oav | 2019-01-16 | 阅读(483) | 评论(754)
福建省10个代表团的200多名选手们努力克服生理障碍,全力赴赛,充分展示了精湛的职业技能、不屈的意志和顽强进取、乐观向上的良好精神风貌。【阅读全文】
ar5 | 2019-01-15 | 阅读(511) | 评论(800)
管廊的布局规划很难考虑50年甚至更长期的发展,可能会导致若干年后与其他地下设施之间的不协调。【阅读全文】
dek | 2019-01-15 | 阅读(125) | 评论(399)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
共5页

友情链接,当前时间:2019-01-18

利来国际备用 利来国际手机版 利来国际备用 w66.com 利来国际最给利的老牌
利来ag旗舰厅手机版 利来国际w66客服 利来娱乐国际最给利老牌网站 w66利来国际手机app w66利来国际
w66 利来电游官方网站 利来国际备用 w66.C0m 利来娱乐账户
利来娱乐国际 利来国际AG旗舰店 利来国际备用 利来国际官网 利来国际最给力老牌
醴陵市| 文昌市| 禄丰县| 通河县| 贵德县| 诏安县| 方城县| 威信县| 武隆县| 泰安市| 鄂伦春自治旗| 金堂县| 静安区| 蒙自县| 乌兰浩特市| 景谷| 乳源| 阿拉善盟| 思南县| 广平县| 黔西| 叙永县| 怀远县| 连州市| 襄樊市| 余姚市| 新源县| 阿尔山市| 韶山市| 九寨沟县| 莱西市| 密云县| 蒙城县| 浦江县| 阜新市| 葫芦岛市| 新乡县| 通许县| 山西省| 博罗县| 辉南县| http://m.01852163.cn http://m.44285870.cn http://m.56795776.cn http://m.35482875.cn http://m.61024310.cn http://m.10420362.cn